
H5Z-ZFP Documentation
Release 0.6.0

H5Z-ZFP

Aug 18, 2022

Contents

1 Installation 3

2 Interfaces 7

3 HDF5 Chunking 11

4 Direct Writes (and Reads) 17

5 Using H5Z-ZFP Plugin with H5Repack 19

6 Endian Issues 23

7 Tests and Examples 25

8 CMake 27

i

ii

H5Z-ZFP Documentation, Release 0.6.0

H5Z-ZFP is a compression filter for HDF5 using the ZFP compression library, supporting lossy and lossless compres-
sion of floating point and integer data to meet bitrate, accuracy, and/or precision targets. The filter uses the registered
HDF5 filter ID, 32013. It supports single and double precision floating point and integer data chunked in 1, 2 or 3
dimensions. The filter will function on datasets of more than 3 dimensions (or 4 dimensions for ZFP versions 0.5.4
and newer), albeit at the possible expense of compression performance, as long as no more than 3 (or 4) dimensions
of the HDF5 dataset chunking are of size greater than 1.

Contents:

Contents 1

https://github.com/LLNL/H5Z-ZFP
https://support.hdfgroup.org/HDF5/doc/index.html
http://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/services/filters.html#zfp
https://support.hdfgroup.org/HDF5/doc/index.html

H5Z-ZFP Documentation, Release 0.6.0

2 Contents

CHAPTER 1

Installation

1.1 Installing via Spack

The HDF5 and ZFP libraries and the H5Z-ZFP plugin are all now part of the Spack package manager. If you already
have Spack installed, the easiest way to install H5Z-ZFP is to simply use the Spack command spack install
h5z-zfp. If you do not have Spack installed, it is very easy to install.

git clone https://github.com/llnl/spack.git
. spack/share/spack/setup-env.sh
spack install h5z-zfp

By default, H5Z-ZFP will attempt to build with Fortran support which requires a Fortran compiler. If you wish to
exclude support for Fortran, use the command

spack install h5z-zfp~fortran

Note that these commands will build H5Z-ZFP and all of its dependencies including the HDF5 library (as well as a
number of other dependencies you may not initially expect. Be patient and let the build complete). In addition, by
default, Spack installs packages to directory hashes within the cloned Spack repository’s directory tree, $spack/
opt/spack. You can find the resulting installed HDF5 library with the command spack find -vp hdf5
and your resulting H5Z-ZFP plugin installation with the command spack find -vp h5z-zfp. If you wish to
exercise more control over where Spack installs things, have a look at configuring Spack

1.2 Manual Installation

If Spack is not an option for you, information on manually installing is provided here.

1.2.1 Prerequisites

• ZFP Library (or from Github)

3

https://support.hdfgroup.org/HDF5/doc/index.html
https://computation.llnl.gov/projects/floating-point-compression
https://github.com/LLNL/H5Z-ZFP
https://spack.io
https://spack.io
https://github.com/LLNL/H5Z-ZFP
https://spack.io
https://spack.io
https://github.com/LLNL/H5Z-ZFP
https://github.com/LLNL/H5Z-ZFP
https://support.hdfgroup.org/HDF5/doc/index.html
https://spack.io
https://spack.io
https://support.hdfgroup.org/HDF5/doc/index.html
https://spack.io
https://spack.readthedocs.io/en/latest/config_yaml.html#install-tree
https://spack.io
http://computation.llnl.gov/projects/floating-point-compression/download/zfp-0.5.0.tar.gz
https://github.com/LLNL/zfp

H5Z-ZFP Documentation, Release 0.6.0

• HDF5 Library

• H5Z-ZFP filter plugin

1.2.2 Compiling ZFP

• There is a Config file in top-level directory of the ZFP distribution that holds make variables the ZFP Make-
files use. By default, this file is setup for a vanilla GNU compiler. If this is not the appropriate compiler, edit
Config as necessary to adjust the compiler and compilation flags.

• An important flag you will need to adjust in order to use the ZFP library with this HDF5 filter is the
BIT_STREAM_WORD_TYPE CPP flag. To use ZFP with H5Z-ZFP, the ZFP library must be compiled with
BIT_STREAM_WORD_TYPE of uint8. Typically, this is achieved by including a line in Config of the form
DEFS += -DBIT_STREAM_WORD_TYPE=uint8. If you attempt to use this filter with a ZFP library com-
piled differently from this, the filter’s can_apply method will always return false. This will result in silently
ignoring an HDF5 client’s request to compress data with ZFP. Also, be sure to see Endian Issues.

• After you have setup Config, simply run make and it will build the ZFP library placing the library in a lib
sub-directory and the necessary include files in inc[lude] sub-directory.

• For more information and details, please see the ZFP README.

1.2.3 Compiling HDF5

• If you want to be able to run the fortran tests for this filter, HDF5 must be configured with both the
--enable-fortran and --enable-fortran2003 configuration switches. Otherwise, any vanilla in-
stallation of HDF5 is acceptable.

• The Fortran interface to this filter requires a Fortran 2003 compiler because it uses ISO_C_BINDING to define
the Fortran interface.

• If you are using HDF5-1.12 and wish to use the filter as a library (see Plugin vs. Library Operation), you
may need configure HDF5 with --disable-memory-alloc-sanity-check to work around a memory
management issue in HDF5.

1.3 Compiling H5Z-ZFP

H5Z-ZFP is designed to be compiled both as a standalone HDF5 plugin and as a separate library an application can
explicitly link. See Plugin vs. Library Operation.

Once you have installed the prerequisites, you can compile H5Z-ZFP using a command-line. . .

make [FC=<Fortran-compiler>] CC=<C-compiler> \
ZFP_HOME=<path-to-zfp> HDF5_HOME=<path-to-hdf5> \
PREFIX=<path-to-install>

where <path-to-zfp> is a directory containing ZFP inc[lude] and lib dirs and <path-to-hdf5> is a
directory containing HDF5 include and lib dirs. If you don’t specify a C compiler, it will try to guess one from
your path. Fortran compilation is optional. If you do not specify a Fortran compiler, it will not attempt to build the
Fortran interface. However, if the variable FC is already defined in your enviornment (as in Spack for example), then
H5Z-ZFP will attempt to build Fortran. If this is not desired, the solution is to pass an empty FC on the make command
line as in. . .

4 Chapter 1. Installation

https://support.hdfgroup.org/ftp/HDF5/current/src/hdf5-1.8.17.tar.gz
https://github.com/LLNL/H5Z-ZFP
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/index.html
https://computation.llnl.gov/projects/floating-point-compression
https://github.com/LLNL/H5Z-ZFP
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/index.html
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://github.com/LLNL/zfp/blob/master/README.md
https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/index.html
https://gcc.gnu.org/onlinedocs/gfortran/ISO_005fC_005fBINDING.html
https://github.com/LLNL/H5Z-ZFP
https://support.hdfgroup.org/HDF5/doc/index.html
https://github.com/LLNL/H5Z-ZFP
https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/index.html
https://spack.io
https://github.com/LLNL/H5Z-ZFP

H5Z-ZFP Documentation, Release 0.6.0

make FC= CC=<C-compiler> \
ZFP_HOME=<path-to-zfp> HDF5_HOME=<path-to-hdf5> \
PREFIX=<path-to-install>

The Makefile uses GNU Make syntax and is designed to work on OSX and Linux. The filter has been tested on gcc,
clang, xlc, icc and pgcc compilers and checked with valgrind.

The command make help will print useful information about various make targets and variables. make check
will compile everything and run a handful of tests.

If you don’t specify a PREFIX, it will install to ./install. The installed package will look like. . .

$(PREFIX)/include/{H5Zzfp.h,H5Zzfp_plugin.h,H5Zzfp_props.h,H5Zzfp_lib.h}
$(PREFIX)/plugin/libh5zzfp.{so,dylib}
$(PREFIX)/lib/libh5zzfp.a

where $(PREFIX) resolves to whatever the full path of the installation is.

To use the installed filter as an HDF5 plugin, you would specify, for example, setenv HDF5_PLUGIN_PATH
$(PREFIX)/plugin

1.4 H5Z-ZFP Source Code Organization

The source code is in two separate directories

• src includes the ZFP filter and a few header files

– H5Zzfp_plugin.h is an optional header file applications may wish to include because it contains sev-
eral convenient macros for easily controlling various compression modes of the ZFP library (rate, preci-
sion, accuracy, expert) via the Generic Interface.

– H5Zzfp_props.h is a header file that contains functions to control the filter using temporary Properties
Interface. Fortran callers are required to use this interface.

– H5Zzfp_lib.h is a header file for applications that wish to use the filter explicitly as a library rather
than a plugin.

– H5Zzfp.h is an all-of-the-above header file for applications that don’t care too much about separating
out the above functionalities.

• test includes various tests. In particular test_write.c includes examples of using both the Generic In-
terface and Properties Interface. In addition, there is an example of how to use the filter from Fortran in
test_rw_fortran.F90.

1.5 Silo Integration

This filter (H5Zzfp.c) is also built-in to the Silo library. In particular, the ZFP library itself is also embedded in Silo
but is protected from appearing in Silo’s global namespace through a struct of function pointers (see Namespaces in
C). If you happen to examine the source code here for H5Z-ZFP, you will see some logic here that is specific to using
this plugin within Silo and dealing with ZFP as an embedded library using this struct of function pointers wrapper. In
the source code for H5Z-ZFP this manifests as something like what is shown in the code snippet below. . .

1 switch (ndims_used)
2 {
3 case 1: dummy_field = Z zfp_field_1d(0, zt, dims_used[0]); break;

(continues on next page)

1.4. H5Z-ZFP Source Code Organization 5

https://support.hdfgroup.org/HDF5/doc/index.html
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://wci.llnl.gov/simulation/computer-codes/silo
https://computation.llnl.gov/projects/floating-point-compression
https://github.com/markcmiller86/silo-issues/wiki/Using-C-structs-as-a-kind-of-namespace-mechanism-to-reduce-global-symbol-bloat
https://github.com/markcmiller86/silo-issues/wiki/Using-C-structs-as-a-kind-of-namespace-mechanism-to-reduce-global-symbol-bloat
https://github.com/LLNL/H5Z-ZFP
https://computation.llnl.gov/projects/floating-point-compression
https://github.com/LLNL/H5Z-ZFP

H5Z-ZFP Documentation, Release 0.6.0

(continued from previous page)

4 case 2: dummy_field = Z zfp_field_2d(0, zt, dims_used[1], dims_used[0]);
→˓break;

5 case 3: dummy_field = Z zfp_field_3d(0, zt, dims_used[2], dims_used[1], dims_
→˓used[0]); break;

6 #if ZFP_VERSION_NO >= 0x0540
7 case 4: dummy_field = Z zfp_field_4d(0, zt, dims_used[3], dims_used[2], dims_

→˓used[1], dims_used[0]); break;
8 #endif
9 default: H5Z_ZFP_PUSH_AND_GOTO(H5E_PLINE, H5E_BADVALUE, 0,

10 #if ZFP_VERSION_NO < 0x0530
11 "chunks may have only 1...3 non-unity dims");
12 #else
13 "chunks may have only 1...4 non-unity dims");
14 #endif
15 }

In the code snippet above, note the funny Z in front of calls to various methods in the ZFP library. When com-
piling H5Z-ZFP normally, that Z normally resolves to the empty string. But, when the code is compiled with
-DAS_SILO_BUILTIN (which is supported and should be done only when H5Zzfp.c is being compiled within
the Silo library and next to a version of ZFP that is embedded in Silo) that Z resolves to the name of a struct and
struct-member dereferncing operator as in zfp.. There is a similar B used for a similar purpose ahead of calls to
ZFP’s bitstream library. This is something to be aware of and to adhere to if you plan to contribute any code changes
here.

6 Chapter 1. Installation

https://computation.llnl.gov/projects/floating-point-compression
https://github.com/LLNL/H5Z-ZFP
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression

CHAPTER 2

Interfaces

There are two interfaces to control the filter. One uses HDF5’s generic interface via an array of unsigned int
cd_values as is used in H5Pset_filter(). The other uses HDF5 properties added to the dataset creation property list
used when the dataset to be compressed is being created. You can find examples of writing HDF5 data using both the
generic and properties interfaces in test_write.c.

The filter itself supports either interface. The filter also supports all of the standard ZFP controls for affecting com-
pression including rate, precision, accuracy, expert and reversible modes. For more information and details about
these modes of controlling ZFP compression, please see the ZFP README.

Finally, you should not attempt to combine the ZFP filter with any other byte order altering filter such as, for example,
HDF5’s shuffle filter. Space-performance will be ruined. This is in contrast to HDF5’s deflate filter which often
performs better when used in conjunction with the shuffle filter.

2.1 Generic Interface

The generic interface is the only means of controlling the H5Z-ZFP filter when it is used as a dynamically loaded
HDF5 plugin.

For the generic interface, the following CPP macros are defined in the H5Zzfp_plugin.h header file:

H5Pset_zfp_rate_cdata(double rate, size_t cd_nelmts, unsigned int *cd_vals);
H5Pset_zfp_precision_cdata(unsigned int prec, size_t cd_nelmts, unsigned int *cd_
→˓vals);
H5Pset_zfp_accuracy_cdata(double acc, size_t cd_nelmts, unsigned int *cd_vals);
H5Pset_zfp_expert_cdata(unsigned int minbits, unsigned int maxbits,

unsigned int maxprec, int minexp,
size_t cd_nelmts, unsigned int *cd_vals);

H5Pset_zfp_reversible_cdata(size_t cd_nelmts, unsigned int *cd_vals);

These macros utilize type punning to store the relevant ZFP parameters into a sufficiently large array (>=6) of
unsigned int cd_values. It is up to the caller to then call H5Pset_filter() with the array of cd_values con-
structed by one of these macros.

7

https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-SetFilter
https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#GenericPropFuncs
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#DatasetCreatePropFuncs
https://support.hdfgroup.org/HDF5/doc/index.html
https://github.com/LLNL/H5Z-ZFP/blob/master/test/test_write.c#L263
https://github.com/LLNL/H5Z-ZFP/blob/master/test/test_write.c#L290
https://github.com/LLNL/H5Z-ZFP/blob/master/test/test_write.c
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://github.com/LLNL/zfp/blob/master/README.md
https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-SetDeflate
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-SetShuffle
https://github.com/LLNL/H5Z-ZFP
https://support.hdfgroup.org/HDF5/doc/Advanced/DynamicallyLoadedFilters/HDF5DynamicallyLoadedFilters.pdf
https://support.hdfgroup.org/HDF5/doc/Advanced/DynamicallyLoadedFilters/HDF5DynamicallyLoadedFilters.pdf
https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-SetFilter

H5Z-ZFP Documentation, Release 0.6.0

Here is example code from test_write.c. . .

1 if (zfpmode == H5Z_ZFP_MODE_RATE)
2 H5Pset_zfp_rate_cdata(rate, cd_nelmts, cd_values);
3 else if (zfpmode == H5Z_ZFP_MODE_PRECISION)
4 H5Pset_zfp_precision_cdata(prec, cd_nelmts, cd_values);
5 else if (zfpmode == H5Z_ZFP_MODE_ACCURACY)
6 H5Pset_zfp_accuracy_cdata(acc, cd_nelmts, cd_values);
7 else if (zfpmode == H5Z_ZFP_MODE_EXPERT)
8 H5Pset_zfp_expert_cdata(minbits, maxbits, maxprec, minexp, cd_nelmts, cd_

→˓values);
9 else if (zfpmode == H5Z_ZFP_MODE_REVERSIBLE)

10 H5Pset_zfp_reversible_cdata(cd_nelmts, cd_values);
11 else
12 cd_nelmts = 0; /* causes default behavior of ZFP library */
13

14 /* print cd-values array used for filter */
15 printf("%d cd_values= ", (int) cd_nelmts);
16 for (i = 0; i < (int) cd_nelmts; i++)
17 printf("%u,", cd_values[i]);
18 printf("\n");
19

20 /* Add filter to the pipeline via generic interface */
21 if (0 > H5Pset_filter(cpid, H5Z_FILTER_ZFP, H5Z_FLAG_MANDATORY, cd_nelmts, cd_

→˓values)) ERROR(H5Pset_filter);
22

However, these macros are only a convenience. You do not need the H5Zzfp_plugin.h header file if you want to
avoid using it. But, you are then responsible for setting up the cd_values array correctly for the filter. For reference,
the cd_values array for this ZFP filter is defined like so. . .

cd_values index
ZFP mode 0 1 2 3 4 5
rate 1 unused rateA rateB unused unused
precision 2 unused prec unused unused unused
accuracy 3 unused accA accB unused unused
expert 4 unused minbits maxbits maxprec minexp
reversible 5 unused unused unused unused unsued

A/B are high/low 32-bit words of a double.

Note that the cd_values used in the generic interface to H5Pset_filter() are not the same cd_values ultimately
stored to the HDF5 dataset header for a compressed dataset. The values are transformed in the set_local method to use
ZFP’s internal routines for ‘meta’ and ‘mode’ data. So, don’t make the mistake of examining the values you find in a
file and think you can use those same values, for example, in an invokation of h5repack.

2.2 Properties Interface

For the properties interface, the following functions are defined in the H5Zzfp_props.h header file:

herr_t H5Pset_zfp_rate(hid_t dcpl_id, double rate);
herr_t H5Pset_zfp_precision(hid_t dcpl_id, unsigned int prec);
herr_t H5Pset_zfp_accuracy(hid_t dcpl_id, double acc);
herr_t H5Pset_zfp_expert(hid_t dcpl_id,

(continues on next page)

8 Chapter 2. Interfaces

https://github.com/LLNL/H5Z-ZFP/blob/master/test/test_write.c
https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/index.html
https://computation.llnl.gov/projects/floating-point-compression

H5Z-ZFP Documentation, Release 0.6.0

(continued from previous page)

unsigned int minbits, unsigned int maxbits,
unsigned int maxprec, int minexp);

herr_t H5Pset_zfp_reversible(hid_t dcpl_id);

These functions take a dataset creation property list, hid_t dcp_lid and create temporary HDF5 property list
entries to control the ZFP filter. Calling any of these functions removes the effects of any previous call to any one of
these functions. In addition, calling any one of these functions also has the effect of adding the filter to the pipeline.

Here is example code from test_write.c. . .

1 H5Z_zfp_initialize();
2

3 /* Setup the filter using properties interface. These calls also add
4 the filter to the pipeline */
5 if (zfpmode == H5Z_ZFP_MODE_RATE)
6 H5Pset_zfp_rate(cpid, rate);
7 else if (zfpmode == H5Z_ZFP_MODE_PRECISION)
8 H5Pset_zfp_precision(cpid, prec);
9 else if (zfpmode == H5Z_ZFP_MODE_ACCURACY)

10 H5Pset_zfp_accuracy(cpid, acc);
11 else if (zfpmode == H5Z_ZFP_MODE_EXPERT)
12 H5Pset_zfp_expert(cpid, minbits, maxbits, maxprec, minexp);
13 else if (zfpmode == H5Z_ZFP_MODE_REVERSIBLE)
14 H5Pset_zfp_reversible(cpid);
15

The properties interface is more type-safe than the generic interface. However, there is no way for the implementation
of the properties interface to reside within the filter plugin itself. The properties interface requires that the caller link
with with the filter as a library, libh5zzfp.a. The generic interface does not require this.

Note that either interface can be used whether the filter is used as a plugin or as a library. The difference is whether
the application calls H5Z_zfp_initialize() or not.

2.3 Fortran Interface

Fortran equivalents for both the properties and generic interfaces, described above, has been added by Scot Breitenfeld
of the HDF5 group. The code that implements the Fortran interfaces is in the file H5Zzfp_props_f.F90. An
example of its use is in test/test_rw_fortran.F90.

2.4 Plugin vs. Library Operation

The filter is designed to be compiled for use as both a standalone HDF5 dynamically loaded HDF5 plugin and as
an explicitly linked library. When it is used as a plugin, it is a best practice to link the ZFP library into the plugin
dynamic/shared object as a static library. Why? In so doing, we ensure that all ZFP public namespace symbols remain
confined to the plugin so as not to interfere with any application that may be directly explicitly linking to the ZFP
library for other reasons.

All HDF5 applications are required to find the plugin dynamic library (named lib*.{so,dylib}) in a directory
specified by the enviornment variable, HDF5_PLUGIN_PATH. Currently, the HDF5 library offers no mechanism for
applications themselves to have pre-programmed paths in which to search for a plugin. Applications are then always
vulnerable to an incorrectly specified or unspecified HDF5_PLUGIN_PATH environment variable.

2.3. Fortran Interface 9

https://support.hdfgroup.org/HDF5/doc/index.html
https://computation.llnl.gov/projects/floating-point-compression
https://github.com/LLNL/H5Z-ZFP/blob/master/test/test_write.c
https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/Advanced/DynamicallyLoadedFilters/HDF5DynamicallyLoadedFilters.pdf
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/index.html

H5Z-ZFP Documentation, Release 0.6.0

However, the plugin can also be used explicitly as a library. In this case, do not specify the HDF5_PLUGIN_PATH
enviornment variable and instead have the application link to libH5Zzfp.a in the lib dir of the installation. Instead
two initialization and finalization routines are defined:

int H5Z_zfp_initialize(void);
int H5Z_zfp_finalize(void);

These functions are defined in the H5Zzfp_lib.h header file. Any applications that wish to use the filter as a
library are required to call the initialization routine, H5Z_zfp_initialize() before the filter can be referenced.
In addition, to free up resources used by the filter, applications may call H5Z_zfp_finalize() when they are
done using the filter.

10 Chapter 2. Interfaces

CHAPTER 3

HDF5 Chunking

HDF5’s dataset chunking feature is a way to optimize data layout on disk to support partial dataset reads by down-
stream consumers. This is all the more important when compression filters are applied to datasets as it frees a consumer
from suffering the UNcompression of an entire dataset only to read a portion.

3.1 ZFP Chunklets

When using HDF5 chunking with ZFP compression, it is important to account for the fact that ZFP does its work in
tiny 4d chunklets of its own where d is the dataset dimension (rank in HDF5 parlance). This means that that whenever
possible chunking dimensions you select in HDF5 should be multiples of 4. When a chunk dimension is not a multiple
of 4, ZFP will wind up with partial chunklets which it will pad with useless data reducing overall time and space
efficiency of the results.

The degree to which this may degrade performance depends on the percentage of a chunk that is padded. Suppose we
have 2D chunk of dimensions 27 x 101. ZFP will have to treat it as 28 x 104 by padding out each dimension to the
next closest multiple of 4. The fraction of space that will wind up being wasted due to ZFP chunklet padding will be
(28x104-27x101) / (28x104) which is about 6.4%. On the other hand, consider a 3D chunk that is 1024 x 1024 x 2.
ZFP will have to treat it as a 1024 x 1024 x 4 resulting in 50% waste.

The latter example is potentialy very relevant when attemping to apply ZFP to compress data long the time dimension
in a large, 3D, simulation. Ordinarily, a simulation advances one time step at a time and so needs to store in memory
only the current timestep. In order to give ZFP enough width in the time dimension to satisfy the minimum chunklet
dimension size of 4, the simulation needs to keep in memory 4 timesteps. This is demonstrated in the example below.

3.2 More Than 3 (or 4) Dimensions

Versions of ZFP 0.5.3 and older support compression in only 1,2 or 3 dimensions. Versions of ZFP 0.5.4 and newer
also support 4 dimensions.

What if you have a dataset with more dimensions than ZFP can compress? You can still use the H5Z-ZFP filter. But,

11

https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://github.com/LLNL/H5Z-ZFP

H5Z-ZFP Documentation, Release 0.6.0

in order to do so you are required to chunk the dataset1 . Furthermore, you must select a chunk size such that no more
than 3 (or 4 for ZFP 0.5.4 and newer) dimensions are non-unitary (e.g. of size one).

For example, what if you are using ZFP 0.5.3 and have a 4D HDF5 dataset you want to compress? To do this, you
will need to chunk the dataset and when you define the chunk size and shape, you will need to select which of the 4
dimensions of the chunk you do not intend to have ZFP perform compression along by setting the size of the chunk in
that dimension to unity (1). When you do this, as HDF5 processes writes and reads, it will organize the data so that all
the H5Z-ZFP filter sees are chunks which have extent only in the non-unity dimensions of the chunk.

In the example below, we have a 4D array of shape int dims[] = {256,128,32,16}; that we have inten-
tionally constructed to be smooth in only 2 of its 4 dimensions (e.g. correlation is high in those dimensions). Because
of that, we expect ZFP compression to do well along those dimensions and we do no want ZFP to compress along the
other 2 dimensions. The uncorrelated dimensions here are dimensions with indices 1 (128 in dims[]) and 3 (16
in dims[]). Thus, our chunk size and shape is chosoen to set the size for those dimension indices to 1, hsize_t
hchunk[] = {256,1,32,1};

1 if (highd)
2 {
3 /* dimension indices 0 1 2 3 */
4 int fd, dims[] = {256,128,32,16};
5 int ucdims[]={1,3}; /* UNcorrleted dimensions indices */
6 hsize_t hdims[] = {256,128,32,16};
7 hsize_t hchunk[] = {256,1,32,1};
8

9 buf = gen_random_correlated_array(TYPDBL, 4, dims, 2, ucdims);
10

11 cpid = setup_filter(4, hchunk, zfpmode, rate, acc, prec, minbits, maxbits,
→˓maxprec, minexp);

12

13 if (0 > (sid = H5Screate_simple(4, hdims, 0))) ERROR(H5Screate_simple);
14

15 /* write the data WITHOUT compression */
16 if (0 > (dsid = H5Dcreate(fid, "highD_original", H5T_NATIVE_DOUBLE, sid, H5P_

→˓DEFAULT, H5P_DEFAULT, H5P_DEFAULT))) ERROR(H5Dcreate);
17 if (0 > H5Dwrite(dsid, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT,

→˓buf)) ERROR(H5Dwrite);
18 if (0 > H5Dclose(dsid)) ERROR(H5Dclose);
19

20 /* write the data with compression */
21 if (0 > (dsid = H5Dcreate(fid, "highD_compressed", H5T_NATIVE_DOUBLE, sid,

→˓H5P_DEFAULT, cpid, H5P_DEFAULT))) ERROR(H5Dcreate);
22 if (0 > H5Dwrite(dsid, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT,

→˓buf)) ERROR(H5Dwrite);
23 if (0 > H5Dclose(dsid)) ERROR(H5Dclose);
24

25 /* clean up from high dimensional test */
26 if (0 > H5Sclose(sid)) ERROR(H5Sclose);
27 if (0 > H5Pclose(cpid)) ERROR(H5Pclose);
28 free(buf);
29 }

What analysis process should you use to select the chunk shape? Depending on what you expect in the way of access
patters in downstream consumers, this can be a challenging question to answer. There are potentially two competing
interests. One is optimizing the chunk size and shape for access patterns anticipated by downstream consumers. The
other is optimizing the chunk size and shape for compression. These two interests may not be compatible and you
may have to compromise between them. We illustrate the issues and tradeoffs using an example.

1 The HDF5 library currently requires dataset chunking anyways for any dataset that has any kind of filter applied.

12 Chapter 3. HDF5 Chunking

https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://github.com/LLNL/H5Z-ZFP
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://support.hdfgroup.org/HDF5/doc/index.html

H5Z-ZFP Documentation, Release 0.6.0

3.3 Compression Along the State Iteration Dimension

By state iteration dimension, we are referring to the main iteration loop(s) of the data producer. For many PDE-based
simulations, the main iteration dimension is time. But, for some outer loop methods, the main iteration dimension(s)
might be some kind of parameter study including multiple paramaters.

The challenge here is to manage the data in a way that meets ZFP’s chunklet size and shape minimum requirements.
In any H5Dwrite at least 4 samples along a ZFP compression dimension are needed or there will be wasted space due
to padding. This means that data must be buffered along those dimensions before H5Dwrite’s can be issued.

For example, suppose you have a tensor valued field (e.g. a 3x3 matrix at every point) over a 4D (3 spatial dimensions
and 1 time dimension), regularly sampled domain? Conceptually, this is a 6 dimensional dataset in HDF5 with one of
the dimensions (the time dimension) extendible. You are free to define this as a 6 dimensional dataset in HDF5. But,
you will also have to chunk the dataset. You can select any chunk shape you want except that no more than 3 (or 4 for
ZFP versions 0.5.4 and newer) dimensions of the chunk can be non-unity.

In the code snipit below, we demonstrate this case. A key issue to deal with is that because we will use ZFP to
compress along the time dimension, this forces us to keep in memory a sufficient number of timesteps to match ZFP’s
chunklet size of 4.

The code below iterates over 9 timesteps. Each of the first two groups of 4 timesteps are buffered in memory in tbuf.
Once 4 timesteps have been buffered, we can issue an H5Dwrite call doing hyperslab can issue an H5Dwrite call doing
hyperslab partial I/O on the 6D, extendible dataset. But, notice that the chunk dimensions (line 10) are such that only
4 of the 6 dimensions are non-unity. This means ZFP will only ever see something to compress that is essentially 4D.

On the last iteration, we have only one new timestep. So, when we write this to ZFP 75% of that write will be wasted
due to ZFP chunklet padding. However, if the application were to restart from this time and continue forward, this
waste will ulimately get overwritten with new timesteps.

1 /* Test six dimensional, time varying array...
2 ...a 3x3 tensor valued variable
3 ...over a 3D+time domain.
4 Dimension sizes are chosen to miss perfect ZFP block alignment.
5 */
6 if (sixd)
7 {
8 void *tbuf;
9 int t, fd, dims[] = {31,31,31,3,3}; /* a single time instance */

10 int ucdims[]={3,4}; /* indices of UNcorrleted dimensions in dims (tensor
→˓components) */

11 hsize_t hdims[] = {31,31,31,3,3,H5S_UNLIMITED};
12 hsize_t hchunk[] = {31,31,31,1,1,4}; /* 4 non-unity, requires >= ZFP 0.5.4 */
13 hsize_t hwrite[] = {31,31,31,3,3,4}; /* size/shape of any given H5Dwrite */
14

15 /* Setup the filter properties and create the dataset */
16 cpid = setup_filter(6, hchunk, zfpmode, rate, acc, prec, minbits, maxbits,

→˓maxprec, minexp);
17

18 /* Create the time-varying, 6D dataset */
19 if (0 > (sid = H5Screate_simple(6, hwrite, hdims))) ERROR(H5Screate_simple);
20 if (0 > (dsid = H5Dcreate(fid, "6D_extendible", H5T_NATIVE_DOUBLE, sid, H5P_

→˓DEFAULT, cpid, H5P_DEFAULT))) ERROR(H5Dcreate);
21 if (0 > H5Sclose(sid)) ERROR(H5Sclose);
22 if (0 > H5Pclose(cpid)) ERROR(H5Pclose);
23

24 /* Generate a single buffer which we'll modulate by a time-varying function
25 to represent each timestep */
26 buf = gen_random_correlated_array(TYPDBL, 5, dims, 2, ucdims);

(continues on next page)

3.3. Compression Along the State Iteration Dimension 13

https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5D.html#Dataset-Write
https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5D.html#Dataset-Write
https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5D.html#Dataset-Write
https://support.hdfgroup.org/HDF5/Tutor/selectsimple.html
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5D.html#Dataset-Write
https://support.hdfgroup.org/HDF5/Tutor/selectsimple.html
https://support.hdfgroup.org/HDF5/Tutor/extend.html
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression

H5Z-ZFP Documentation, Release 0.6.0

(continued from previous page)

27

28 /* Allocate the "time" buffer where we will buffer up each time step
29 until we have enough to span a width of 4 */
30 tbuf = malloc(31*31*31*3*3*4*sizeof(double));
31

32 /* Iterate, writing 9 timesteps by buffering in time 4x. The last
33 write will contain just one timestep causing ZFP to wind up
34 padding all those blocks by 3x along the time dimension. */
35 for (t = 1; t < 10; t++)
36 {
37 hid_t msid, fsid;
38 hsize_t hstart[] = {0,0,0,0,0,t-4}; /* size/shape of any given H5Dwrite */
39 hsize_t hcount[] = {31,31,31,3,3,4}; /* size/shape of any given H5Dwrite

→˓*/
40 hsize_t hextend[] = {31,31,31,3,3,t}; /* size/shape of */
41

42 /* Update (e.g. modulate) the buf data for the current time step */
43 modulate_by_time(buf, TYPDBL, 5, dims, t);
44

45 /* Buffer this timestep in memory. Since chunk size in time dimension is
→˓4,

46 we need to buffer up 4 time steps before we can issue any writes */
47 buffer_time_step(tbuf, buf, TYPDBL, 5, dims, t);
48

49 /* If the buffer isn't full, just continue updating it */
50 if (t%4 && t!=9) continue;
51

52 /* For last step, adjust time dim of this write down from 4 to just 1 */
53 if (t == 9)
54 {
55 /* last timestep, write a partial buffer */
56 hwrite[5] = 1;
57 hcount[5] = 1;
58 }
59

60 /* extend the dataset in time */
61 if (t > 4)
62 H5Dextend(dsid, hextend);
63

64 /* Create the memory dataspace */
65 if (0 > (msid = H5Screate_simple(6, hwrite, 0))) ERROR(H5Screate_simple);
66

67 /* Get the file dataspace to use for this H5Dwrite call */
68 if (0 > (fsid = H5Dget_space(dsid))) ERROR(H5Dget_space);
69

70 /* Do a hyperslab selection on the file dataspace for this write*/
71 if (0 > H5Sselect_hyperslab(fsid, H5S_SELECT_SET, hstart, 0, hcount, 0))

→˓ERROR(H5Sselect_hyperslab);
72

73 /* Write this iteration to the dataset */
74 if (0 > H5Dwrite(dsid, H5T_NATIVE_DOUBLE, msid, fsid, H5P_DEFAULT, tbuf))

→˓ERROR(H5Dwrite);
75 if (0 > H5Sclose(msid)) ERROR(H5Sclose);
76 if (0 > H5Sclose(fsid)) ERROR(H5Sclose);
77 }
78 if (0 > H5Dclose(dsid)) ERROR(H5Dclose);
79 free(buf);

(continues on next page)

14 Chapter 3. HDF5 Chunking

H5Z-ZFP Documentation, Release 0.6.0

(continued from previous page)

80 free(tbuf);
81 }

3.3. Compression Along the State Iteration Dimension 15

H5Z-ZFP Documentation, Release 0.6.0

16 Chapter 3. HDF5 Chunking

CHAPTER 4

Direct Writes (and Reads)

The purpose of direct writes is to enable an application to write data that is already compressed in memory directly to
an HDF5 file without first uncompressing it so the filter can then turn around and compress it during write. However,
once data is written to the file with a direct write, consumers must still be able to read it without concern for how the
producer wrote it.

Doing this requires the use of an advanced HDF5 function for direct writes.

At present, we demonstrate only minimal functionality here using single chunking, where the chunk size is chosen to
match the size of the entire dataset. To see an example of code that does this, have a look at. . .

1 if (zfparr>0 && zfpmode==1 && rate>0)
2 {
3 int dims[] = {38, 128};
4 /*int chunk_dims[] = {19, 34};*/
5 int chunk_dims[] = {38, 128};
6 hsize_t hdims[] = {38, 128};
7 /*hsize_t hchunk_dims[] = {19, 34};*/
8 hsize_t hchunk_dims[] = {38, 128};
9 hsize_t hchunk_off[] = {0, 0};

10 #if defined(ZFP_LIB_VERSION) && ZFP_LIB_VERSION<=0x055
11 cfp_array2d *origarr;
12 #else
13 cfp_array2d origarr;
14 #endif
15

16 /* Create the array data */
17 buf = gen_random_correlated_array(TYPDBL, 2, dims, 0, 0);
18

19 /* Instantiate a cfp array */
20 origarr = cfp.array2d.ctor(dims[1], dims[0], rate, buf, 0);
21 cfp.array2d.flush_cache(origarr);
22

23 cpid = setup_filter(2, hchunk_dims, 1, rate, acc, prec, minbits, maxbits,
→˓maxprec, minexp);

24

(continues on next page)

17

https://portal.hdfgroup.org/display/HDF5/H5D_WRITE_CHUNK
https://portal.hdfgroup.org/display/HDF5/H5D_WRITE_CHUNK

H5Z-ZFP Documentation, Release 0.6.0

(continued from previous page)

25 if (0 > (sid = H5Screate_simple(2, hdims, 0))) ERROR(H5Screate_simple);
26

27 /* write the data WITHOUT compression */
28 if (0 > (dsid = H5Dcreate(fid, "zfparr_original", H5T_NATIVE_DOUBLE, sid, H5P_

→˓DEFAULT, H5P_DEFAULT, H5P_DEFAULT))) ERROR(H5Dcreate);
29 if (0 > H5Dwrite(dsid, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT,

→˓buf)) ERROR(H5Dwrite);
30 if (0 > H5Dclose(dsid)) ERROR(H5Dclose);
31

32 /* write the data with compression via the filter */
33 if (0 > (dsid = H5Dcreate(fid, "zfparr_compressed", H5T_NATIVE_DOUBLE, sid,

→˓H5P_DEFAULT, cpid, H5P_DEFAULT))) ERROR(H5Dcreate);
34 if (0 > H5Dwrite(dsid, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT,

→˓buf)) ERROR(H5Dwrite);
35 if (0 > H5Dclose(dsid)) ERROR(H5Dclose);
36

37 /* write the data direct from compressed array using H5Dwrite_chunk calls */
38 if (0 > (dsid = H5Dcreate(fid, "zfparr_direct", H5T_NATIVE_DOUBLE, sid, H5P_

→˓DEFAULT, cpid, H5P_DEFAULT))) ERROR(H5Dcreate);
39 if (0 > H5Dwrite_chunk(dsid, H5P_DEFAULT, 0, hchunk_off, cfp.array2d.

→˓compressed_size(origarr), cfp.array2d.compressed_data(origarr))) ERROR(H5Dwrite_
→˓chunk);

40

41 if (0 > H5Dclose(dsid)) ERROR(H5Dclose);
42

43 free(buf);
44 cfp.array2d.dtor(origarr);
45 }

In particular, look for the line using H5Dchunk_write in place of H5Dwrite. In all other respects, the code looks
the same.

The test case for this code writes uncompressed data as a dataset named zfparr_original, the compressed
dataset named zfparr_compressed using the filter and then the compressed data a second time named
zfparr_direct using a direct write. Then, the h5diff tool is used to compare the data in the original and
direct datasets.

Note that in order for consumers to work as normal, the producer must set dataset creation properties as it ordinarily
would using the H5Z-ZFP filter. In the call to H5Dchunk_write, the caller indicates to the HDF5 library not to
invoke the filter via the filters mask argument.

18 Chapter 4. Direct Writes (and Reads)

https://github.com/LLNL/H5Z-ZFP

CHAPTER 5

Using H5Z-ZFP Plugin with H5Repack

A convenient way to use and play with the ZFP filter is a plugin with the HDF5 h5repack utility using the -f filter
argument to apply ZFP to existing data in a file.

5.1 Patching h5repack

Some versions of HDF5’s h5repack utility contain a bug that prevents proper parsing of the -f argument’s option. In
order to use h5repack with -f argument as described here, you need to apply the patch from h5repack_parse.patch.
To do so, after you’ve downloaded and untar’d HDF5 but before you’ve built it, do something like the following using
HDF5-1.8.14 as an example:

gunzip < hdf5-1.8.14.tar.gz | tar xvf -
cd hdf5-1.8.14
patch ./tools/h5repack/h5repack_parse.c <path-to-H5Z-ZFP-test-dir>/h5repack_parse.
→˓patch

5.2 Constructing an HDF5 cd_values array

HDF5’s h5repack utility uses only the generic interface to HDF5 filters. Another challenge in using h5repack
as described here is constructing the set unsigned int cd_values as is used in H5Pset_filter() required by the
generic HDF5 filter interface, especially because of the type-punning (doubles as unsigned int) involved.

Note: Querying an existing dataset using h5dump or h5ls to obtain the cd_values stored with a ZFP compressed
dataset will not provide the correct cd_values. This is because the cd_values stored in the file are different from
those used in the generic interface to invoke the ZFP filter.

To facilitate constructing a valid -f argument to h5repack, we have created a utility program,
print_h5repack_farg, which is presently in the test directory and is built when tests are built.

You can use the print_h5repack_farg utility to read a command-line consisting of ZFP filter parameters you
wish to use and it will output part of the command-line needed for the -f argument to h5repack.

19

https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Repack
https://support.hdfgroup.org/HDF5/doc/index.html
https://github.com/LLNL/H5Z-ZFP/blob/master/test/h5repack_parse.patch
https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-SetFilter
https://support.hdfgroup.org/HDF5/doc/index.html
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression

H5Z-ZFP Documentation, Release 0.6.0

5.3 Examples

In the examples below, we use h5repack with the example data file, mesh.h5 in the tests directory.

To use ZFP filter in rate mode with a rate of 4.5 bits per value, first, use the print_h5repack_farg:

% ./print_h5repack_farg zfpmode=1 rate=4.5

Print cdvals for set of ZFP compression paramaters...
zfpmode=1 set zfp mode (1=rate,2=prec,3=acc,4=expert)
rate=4.5 set rate for rate mode of filter
acc=0 set accuracy for accuracy mode of filter
prec=11 set precision for precision mode of zfp filter
minbits=0 set minbits for expert mode of zfp filter
maxbits=4171 set maxbits for expert mode of zfp filter
maxprec=64 set maxprec for expert mode of zfp filter
minexp=-1074 set minexp for expert mode of zfp filter
help=0 this help message

h5repack -f argument...
-f UD=32013,0,4,1,0,0,1074921472

Next, cut-n-paste the -f UD=32013,0,4,1,0,0,1074921472 in a command to h5repack like so:

env LD_LIBRARY_PATH=<path-to-dir-with-libhdf5.so>:$(LD_LIBRARY_PATH) \
HDF5_PLUGIN_PATH=<path-to-dir-with-libh5zzfp.so> \
$(HDF5_BIN)/h5repack -f UD=32013,0,4,1,0,0,1074921472 \

-l Pressure,Pressure2,Pressure3:CHUNK=10x20x5 \
-l Velocity,Velocity2,Velocity3,VelocityZ,VelocityZ2,

→˓VelocityZ3:CHUNK=11x21x1x1 \
-l VelocityX_2D:CHUNK=21x31 \
mesh.h5 mesh_repack.h5

where the -l arguments indicate the dataset(s) to be re-packed as well as their (new) chunking.

To use ZFP filter in accuracy mode with an accuracy of 0.075, first, use the print_h5repack_farg:

% ./print_h5repack_farg zfpmode=3 acc=0.075

Print cdvals for set of ZFP compression paramaters...
zfpmode=3 set zfp mode (1=rate,2=prec,3=acc,4=expert)
rate=4 set rate for rate mode of filter
acc=0.075 set accuracy for accuracy mode of filter
prec=11 set precision for precision mode of zfp filter
minbits=0 set minbits for expert mode of zfp filter
maxbits=4171 set maxbits for expert mode of zfp filter
maxprec=64 set maxprec for expert mode of zfp filter
minexp=-1074 set minexp for expert mode of zfp filter
help=0 this help message

h5repack -f argument...
-f UD=32013,0,4,3,0,858993459,1068708659

Next, cut-n-paste the -f UD=32013,0,4,3,0,858993459,1068708659 in a command to h5repack like
so:

env LD_LIBRARY_PATH=<path-to-dir-with-libhdf5.so>:$(LD_LIBRARY_PATH) \
HDF5_PLUGIN_PATH=<path-to-dir-with-libh5zzfp.so> \

(continues on next page)

20 Chapter 5. Using H5Z-ZFP Plugin with H5Repack

https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression

H5Z-ZFP Documentation, Release 0.6.0

(continued from previous page)

$(HDF5_BIN)/h5repack -f UD=32013,0,4,3,0,858993459,1068708659 \
-l Pressure,Pressure2,Pressure3:CHUNK=10x20x5 \
-l Velocity,Velocity2,Velocity3,VelocityZ,VelocityZ2,

→˓VelocityZ3:CHUNK=11x21x1x1 \
-l VelocityX_2D:CHUNK=21x31 \
mesh.h5 mesh_repack.h5

5.3. Examples 21

H5Z-ZFP Documentation, Release 0.6.0

22 Chapter 5. Using H5Z-ZFP Plugin with H5Repack

CHAPTER 6

Endian Issues

The ZFP library writes an endian-independent stream.

When reading ZFP compressed data on a machine with a different endian-ness than the writer, there is an unnavoidable
inefficiency. Upon reading data from disk and decompressing the read stream with ZFP, the correct endian-ness is
returned in the result from ZFP before the buffer is handed back to HDF5 from the decompression filter. This happens
regardless of reader and writer endian-ness incompatability. However, the HDF5 library is expecting to get from the
decompression filter the endian-ness of the data as it was stored to to file (typically that of the writer machine) and
expects to have to byte-swap that buffer before returning to any endian-incompatible caller. So, in the H5Z-ZFP plugin,
we wind up having to un-byte-swap an already correct result read in a cross-endian context. That way, when HDF5
gets the data and byte-swaps it, it will produce the correct result. There is an endian-ness test in the Makefile and
two ZFP compressed example datasets for big-endian and little-endian machines to test that cross-endian reads/writes
work correctly.

Finally, endian-targetting, that is setting the file datatype for an endian-ness that is possibly different than the native
endian-ness of the writer (to, for example, alleviate down-stream consumers from having to byte-swap due to endian
incompatability between writer and reader) is explicitly dis-allowed because it is not an operation that is currently
supported by the HDF5 library.

23

https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/index.html
https://github.com/LLNL/H5Z-ZFP
https://support.hdfgroup.org/HDF5/doc/index.html
https://computation.llnl.gov/projects/floating-point-compression

H5Z-ZFP Documentation, Release 0.6.0

24 Chapter 6. Endian Issues

CHAPTER 7

Tests and Examples

The tests directory contains a few simple tests of the H5Z-ZFP filter some of which also serve as decent examples.

The test client, test_write.c is compiled a couple of different ways. One target is test_write_plugin which
demonstrates the use of this filter as a standalone plugin. The other target, test_write_lib, demonstrates the
use of the filter as an explicitly linked library. By default, these test a simple 1D array with and without ZFP com-
pression using either the Generic Interface (for plugin) or the Properties Interface (for library). You can use the code
there as an example of using the ZFP filter either as a plugin or as a library. However, these also include some ad-
vanced usages for 4D and 6D, time-varying (e.g. extendible) datasets. The command test_write_lib help or
test_write_plugin help will print a list of the example’s options and how to use them.

7.1 Write Test Options

./test/test_write_lib --help
ifile="" set input filename
ofile="test_zfp.h5" set output filename

1D dataset generation arguments...
npoints=1024 set number of points for 1D dataset
noise=0.001 set amount of random noise in 1D dataset
amp=17.7 set amplitude of sinusoid in 1D dataset
chunk=256 set chunk size for 1D dataset
doint=0 also do integer 1D data

ZFP compression paramaters...
zfpmode=3 (1=rate,2=prec,3=acc,4=expert,5=reversible)
rate=4 set rate for rate mode of filter
acc=0 set accuracy for accuracy mode of filter
prec=11 set precision for precision mode of zfp filter
minbits=0 set minbits for expert mode of zfp filter
maxbits=4171 set maxbits for expert mode of zfp filter
maxprec=64 set maxprec for expert mode of zfp filter
minexp=-1074 set minexp for expert mode of zfp filter

(continues on next page)

25

https://github.com/LLNL/H5Z-ZFP
https://github.com/LLNL/H5Z-ZFP/blob/master/test/test_write.c
https://computation.llnl.gov/projects/floating-point-compression
https://computation.llnl.gov/projects/floating-point-compression

H5Z-ZFP Documentation, Release 0.6.0

(continued from previous page)

Advanced cases...
highd=0 run 4D case
sixd=0 run 6D extendable case (requires ZFP>=0.5.4)
help=0 this help message

The test normally just tests compression of 1D array of integer and double precision data of a sinusoidal array with a
small amount of additive random noise. The highd test runs a test on a 4D dataset where two of the 4 dimensions are
not correlated. This tests the plugin’s ability to properly set chunking for HDF5 such that chunks span only correlated
dimensions and have non-unity sizes in 3 or fewer dimensions. The sixd test runs a test on a 6D, extendible dataset
representing an example of using ZFP for compression along the time axis.

There is a companion, test_read.c which is compiled into test_read_plugin and test_read_lib which
demonstrates use of the filter reading data as a plugin or library. Also, the commands test_read_lib help
and test_read_plugin help will print a list of the command line options.

To use the plugin examples, you need to tell the HDF5 library where to find the H5Z-ZFP plugin with the
HDF5_PLUGIN_PATH environment variable. The value you pass is the path to the directory containing the plu-
gin shared library.

Finally, there is a Fortran test example, test_rw_fortran.F90. The Fortran test writes and reads a 2D dataset. However,
the Fortran test is designed to use the filter only as a library and not as a plugin. The reason for this is that the filter
controls involve passing combinations of integer and floating point data from Fortran callers and this can be done
only through the Properties Interface, which by its nature requires any Fortran application to have to link with an
implementation of that interface. Since we need to link extra code for Fortran, we may as well also link to the filter
itself alleviating the need to use the filter as a plugin. Also, if you want to use Fortran support, the HDF5 library must
have, of course, been configured and built with Fortran support as well.

In addition, a number tests are performed in the Makefile which test the plugin by using some of the HDF5 tools such
as h5dump and h5repack. Again, to use these tools to read data compressed with the H5Z-ZFP filter, you will need
to inform the HDF5 library where to find the filter plugin. For example..

env HDF5_PLUGIN_PATH=<dir> h5ls test_zfp.h5

Where <dir> is the relative or absolute path to a directory containing the filter plugin shared library.

26 Chapter 7. Tests and Examples

https://computation.llnl.gov/projects/floating-point-compression
https://github.com/LLNL/H5Z-ZFP/blob/master/test/test_read.c
https://support.hdfgroup.org/HDF5/doc/index.html
https://github.com/LLNL/H5Z-ZFP
https://github.com/LLNL/H5Z-ZFP/blob/master/test/test_rw_fortran.F90
https://support.hdfgroup.org/HDF5/doc/index.html
https://support.hdfgroup.org/HDF5/doc/index.html
https://github.com/LLNL/H5Z-ZFP
https://support.hdfgroup.org/HDF5/doc/index.html

CHAPTER 8

CMake

It is possible to build the H5Z-ZFP filter using the CMake build system. If you decide to do so, please build ZFP also
with its CMake build system. This is necessary to get the correct dependencies from ZFP. For example, it is possible
to build ZFP with OpenMP support. The resulting CMake config files of ZFP build will make sure that this OpenMP
dependency is correctly propagated to the build of H5Z-ZFP filter. However, for HDF5 it is not necessary to build it
with its CMake build system but it is strongly recommended.

8.1 Compiling H5Z-ZFP

Similar as for the Makefile installation, the CMake build system is designed such it compiles both the standalone
HDF5 plugin and a separate library an application can explicitly link. See Plugin vs. Library Operation

Once you have installed both HDF5 and ZFP, you can compile H5Z-ZFP using a command=line. . .

export HDF_DIR=<path-to_hdf5>
export ZFP_DIR=<path-to-zfp>
CC=<C-compiler> FC=<Fortran-compiler> cmake -DCMAKE_INSTALL_PREFIX=<path-to-install>
→˓<src-dir>

where <path-to-zfp> is a directory containing ZFP inc[lude] and lib directories and <path-to-hdf5>
is a directory containing HDF5 include and lib directories. Furthermore, src-dir is the directory where the
source is located and path-to-install is the directory in which the resulting plugin and library will be installed.
Once cmake has finished successfully, you can build and install the filter using the command. . .

make install

This cmake and make combination builds both the C and Fortran interface. In the case you want to specify the
<path-to-hdf5> and <path-to-zfp>> via command-line to CMake, the command looks like this. . .

CC=<C-compiler> FC=<Fortran-compiler> cmake -DCMAKE_INSTALL_PREFIX=<path-to-install>
-DCMAKE_PREFIX_PATH="<path-tohdf5>;<path-to-zfp>" <src-dir>

27

https://support.hdfgroup.org/HDF5/doc/index.html
https://github.com/LLNL/H5Z-ZFP
https://computation.llnl.gov/projects/floating-point-compression
https://support.hdfgroup.org/HDF5/doc/index.html

H5Z-ZFP Documentation, Release 0.6.0

Please, notice the double quotes in the CMAKE_PREFIX_PATH expression. These are needed to make sure that
semicolon is interpreted as a semicolon instead of a new command.

It is possible to build the filter without the Fortran interface. This is done as follows. . .

export HDF5_DIR=<path-to_hdf5>
export ZFP_DIR=<path-to-zfp>
CC=<C-compiler> cmake -DCMAKE_INSTALL_PREFIX=<path-to-install> -DFORTRAN_
→˓INTERFACE:BOOL=OFF <src-dir>

followed by the same make command. . .

make install

8.2 Including H5Z-ZFP filter in a CMake project

Suppose you have built the H5Z-ZFP filter using the CMake build system and installed it in <path-to-h5z_zfp>.
To include it in another CMake project is done using the following steps. First edit the CMakeLists.txt by adding
the following two lines. . .

cmake_policy(SET CMP0028 NEW) # Double colon in target name means ALIAS or IMPORTED
→˓target.
...
set(H5Z_ZFP_USE_STATIC_LIBS OFF)
find_package(H5Z_ZFP 1.0.1 CONFIG)
...
target_link_libraries(<target> h5z_zfp::h5z_zfp)
...

where <target> in the target within the CMake project. This could be, for example, a executable or library. Fur-
thermore, check if the cmake version is equal or greater than 3.9. Next, you need to make sure that the filter can be
found by CMake, followed CMake itself and make. . .

export H5Z_ZFP_DIR=<path-to-h5z_zfp>
CC=<C-compiler> cmake -DCMAKE_INSTALL_PREFIX=<path-to-install> <src-dir>
make install

The cmake command itself could be different depending on the CMake project you have created. If you want to make
use of the H5Z_ZFP library instead of the plugin, change cmake variable H5Z_ZFP_USE_STATIC_LIBS to ON and
build the project.

28 Chapter 8. CMake

	Installation
	Interfaces
	HDF5 Chunking
	Direct Writes (and Reads)
	Using H5Z-ZFP Plugin with H5Repack
	Endian Issues
	Tests and Examples
	CMake

